Market for the product

Currently more than $30 billion a year in the United States is devoted to repair of roads and bridges. A large fraction, probably the majority, of these repairs are not preventative maintenance, but are made after obvious failure has occurred (cracking of road surfaces,    visible corrosion of bridge structures, etc.). These obvious failures occur long after, generally years after, the first corrosion-based voids and cracks occur hidden within the structures.

Post-failure repairs are estimated to be more than ten times as costly as pre-failure repairs. If incipient, hidden corrosion is detected in time, repair of the affected parts (sealing of cracks, re- welding, re-leveling of roads) is far less expensive. For example, bridge surface patching and repair (preventative maintenance) are estimated to cost around $0.50 per square yard.  In  contrast, bridged deck overlay and joint replacement, occurring after major cracking of the surface, costs about $90 per square yard. Bridge deck replacement costs about $360-400  per square yard.  Even taking into account that preventive maintenance has to be performed  about ten times as often as rehabilitative maintenance, preventative maintenance still costs only about 5% per annum as much as rehabilitative maintenance, let alone complete replacement.

Based on a detailed analysis of bridge and runway maintenance, LPPFusion has calculated that a mid-range estimate on savings would be around $8 billion per year in preventative maintenance of structures before they actually fail. Our X-Scan device will make such savings possible. As a result, we think that state departments of transportation will be extremely interested in our device, as is already evidenced by letters of interest from the DOTs of several states.

To estimate the size of this new market, we have to first calculate the need for inspections. Annual inspections of roads and bridges are essential since corrosion processes are seasonal and advance during every winter and spring. We have to estimate the amount of inspection that can be performed annually by each truck-mounted X-Scan. With several-times-per-second pulses, cross sections every 2 meters can be obtained with a 10 m/s (22 mph) scanning rate. In some roads, a faster rate will be allowable and on bridges a much slower rate will be needed, but this is a good order-of-magnitude estimate.  Realistically, taking into account time to get to and from  the areas being scanned and unavoidable interruptions, approximately 3 hours of scanning per working day or 750 hours per year per unit is reasonable. This means 17,000 miles of bridge and roadways can be scanned by each unit per year (single lane).

There are 3.9 million miles of roadway in the US, including all bridges. With an average of 4 lanes per roadway, this amounts to an annual need for 15.6 million miles of single-lane scans.  For this, some 900 X-Scan machines should be adequate. Pipeline inspection could expand this total considerably, but will not change the order of magnitude of the domestic market. As we expand to global markets, sales could eventually increase to double this number.

Given this potential market, we anticipate reaching a sales rate of about 200 units per year within two to three years after introduction into the market. We anticipate that sales for NDI manufacturing units and laboratory devices will be considerably less, but may collectively increase sales figures by 25%. With a price of $100,000 per unit, this will mean sales in the  range of $20 million a year.










Wefunder Logo p LPPFusion Logo


* indicates required

Please select all the ways you would like to hear from Lawrenceville Plasma Physics:

You can unsubscribe at any time by clicking the link in the footer of our emails. For information about our privacy practices, please visit our website.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices here.

You have Successfully Subscribed!

Share This